

Plasma-Assisted Combustion Studies at AFRL

MURI Kickoff Meeting 4 November 2009

Cam Carter, Tim Ombrello & Mike Brown*

Aerospace Propulsion Division Propulsion Directorate Air Force Research Laboratory

*With contributions from S. Adams, M. Gundersen et al., B. Ganguly & T. Lee

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding and DMB control number.	tion of information. Send commentarters Services, Directorate for Inf	s regarding this burden estimate formation Operations and Reports	or any other aspect of the s, 1215 Jefferson Davis	his collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE 04 NOV 2009		2. REPORT TYPE		3. DATES COVERED 00-00-2009 to 00-00-2009	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER	
Plasma-Assisted Combustion Studies at AFRL				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory, Aerospace Propulsion Division, Propulsion Directorate, Wright Patterson AFB, OH, 45433				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAIL Approved for publ	ABILITY STATEMENT ic release; distribut	ion unlimited			
13. SUPPLEMENTARY NO	TES				
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	ATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER	19a. NAME OF
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 20	RESPONSIBLE PERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

Overview

Areas where plasmas and E-fields can have an influence

- Enhance reaction rate & flamespeed
 - Important for high-speed combustors (& other combustors too):
 - ➤ Ignition, from *cold* state especially & with liquid fuel
 - > Steady operation, through flamespeed enhancement and flameholding
 - Potentially important for lean, gas-turbine (powerplant) operation
 - ➤ Might one also mitigate/influence acoustic fluctuations?
 - ➤ Potential for *uniform* performance with *nonuniform* fuel source
- Enhance fuel-air mixing & penetration
 - Potential alternative to intrusive mechanisms (struts/pylons)
 - Potential for dynamic control of penetration/mixing
 - Potential for creating recirculation region for flameholding
- Boundary-layer & surface interactions
 - Trip boundary layer; hold shock

Overview

Fun Facts on US Energy Consumption

- HC sources provide ~85% of nation's energy
 - 97% for transportation
- Transportation's consumption about 28% of total
 - ≈ 1 million gallons/minute
- Quads = quadrillion (10¹⁵) BTU $\approx 10^{18} \, \mathrm{J}$

US Energy Consumption, 1950-2005

Source: Energy Information Administration, Annual Energy Review 2005, Report DOE/EIA-0384 (2005). See also Report of the Basic Energy Sciences Workshop on Basic Research Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels

Overview

R. CARCE RESEARCH LABORATE P.

Plasma/E-field Effects on Ignition & Flame Behavior

μ-W E-field Effects on Flame Propagation Stockman, Miles, Zaidi (Princeton), Ryan

Planar FRS Thermometry with pulsed μ -W Source

Diagnostics of Plasma Enhanced Flames Lee (MSU)

Direct coupled plasma torch: flame OH vs. µ-wave power:

Plasma-assisted Ignition Cathey, Gundersen, Wang, Cain (USC), Ryan

Ignition event

Effects of Gliding Arc on Flame Chemistry Ombrello, Ju (Princeton), Gutsol, Fridman, (Drexel)

- *Goal:* Study flame propagation increase with plasma-excited oxidizer
- Integrate plasma source with custom *Hencken* burner
 - Gases mix at burner exit
 - Quartz coating of metal surfaces
- Operate at low *P*
 - Reduced reaction rates
 - Allow mixing of fuel & oxidizer upstream of flame

- Decrease chamber *P* to lift flame from surface
 - Flame has fully premixed character at low *P*
- Apply diagnostics to characterize plasma species, T & V
 - Species of interest: O_3 , $O_2(a^1\Delta_g)$, $O_2(b^1\Sigma_g)$, $O_3(b^1\Sigma_g)$

- Use low-P lifted jet flame: lift-off height ΔH_L sensitive to flamespeed, S_L
- Characterize S_L increase with ΔH_L measurement
- Produce & quantify O_3 and $O_2(a^1\Delta_g)$
 - measure ΔH_L

- Graph shows isolated effect of O_3 and $O_2(a^1\Delta_g)$
 - P = 27 or 51 Torr
- Concentrations of $O_2(a^1\Delta_g)$ as large as $\sim X = 0.6\%$
- Conversion of ΔH_L to S_L requires additional measurements and/or modeling
- Work with Hencken flame will be follow-on effort

Ignition Enhancement with Transient Plasma (TP)*

- *Goal:* Determine physical mechanism, primarily for *transient plasma* ignition
 - What is role of humidity: $X_{\rm H2O}$ affects detonation wave speed in PDE but not $t_{\rm ign}$
- Measure X_{OH} and X_{O3} vs. X_{H2O} in air
 - OH from PLIF & O₃ from absorption
 - Need to sample <u>along</u> anode, especially since flame originates from anode surface
- Highly desirable: O-atom distribution
 - Also CH₃ and CH₂O

Combustion chamber

- Variable anode lengths & materials
- Optical access: windowed-slits (not shown) & end-flange window

stoichiometric C_2H_4 -air P = 1 atm $E_{pulse} = 550$ mJ (75 kV) $t_{pulse} \approx 100$ ns

- Effect of anode length & comparison to spark plug (2 cm from back wall)
 - Significant reduction in t_{ign} even with 3-mm length protrusion
- Flame propagates from anode to wall
 - Flame initiation and propagation approx. uniform along perimeter & length

- Camera looking down into chamber
- Continuous flow of moist air
 - 1-Hz pulse frequency
 - $X_{\rm H2O}$ measured with TDLAS
- PLIF of OH: Peak signals ~10¹⁵ cm⁻³

- Camera looking down into chamber
- Continuous flow of moist air
 - 1-Hz pulse frequency
 - $X_{\rm H2O}$ measured with TDLAS
- PLIF of OH: Peak signals ~10¹⁵ cm⁻³

- UV LED beam positioned over washer
 - Undetectable X_{O3} with normal config.
- 1-ms LED pulse synched to TPI pulse
 - 200 o-scope waveforms recorded
 - Presumably, X_{O3} distribution nonuniform

Resonant Laser Induced Breakdown for Fuel-Air Ignition*

• *Goal:* Investigate effectiveness of low-energy REMPI laser pulse to control spatial & temporal behavior of ignition spark in air crossflow

• Approach:

- Apply potential (below breakdown value)
- Focus UV laser pulse at REMPI transition & ionize channel between gap

To be presented at ASM-2010

Resonant Laser Induced Breakdown for Fuel-Air Ignition*

- Sample photo of a laser induced arc
 - Main arc follows laser path
 - Secondary arcs & plasma glow occur after main arc; result of leakage current as capacitor recharges

- Goal: Study effect of pulsed plasma on a C₃H₈/air Bunsen flame
- Quantify with phase-averaged Raman scattering and CH chemiluminescence & time-resolved OH chemiluminescence

- Goal: Study effect of pulsed plasma on a C₃H₈/air Bunsen flame
- Quantify with phase-averaged Raman scattering and CH chemiluminescence & time-resolved OH chemiluminescence

- Goal: Study effect of pulsed plasma on a C₃H₈/air Bunsen flame
- Quantify with phase-averaged Raman scattering and CH chemiluminescence & time-resolved OH chemiluminescence

- 200 Hz rep rate pulsed discharge
 - Few mJ of energy input; significant perturbation
- Phase-locked measurement of T and CH chemiluminescence
 - Finite response of flame; some recovery before next pulse

Summary

Three final thoughts:

- Understanding the role of electric fields, plasma & *plasma-derived* species in initiating and sustaining combustion of critical importance to <u>more</u> effective use
 - Potential for impacting many areas related to use of hydrocarbons
- We (AFRL) welcome collaborations!
 - Many already with MURI team members
 - We'll even do some crazy stuff
- Good luck on efforts!